Tag Archives: movement

Metaphors and shapes

Judith Copithorne image

Judith Copithorne image

Metaphors (including analogs and similitudes) appear to be very basic to thought. These are very important to language and communication. A large bulk of dictionary meanings of words are actually old metaphors, that have been used so much and for so long that the words has lost its figurative root and become literal in their meaning. We simply do not recognize that it was once a metaphor. Much of our learning is metaphorical. We understand one complex idea by noticing its similarity to another complex idea that we already understand. For example, electricity is not easy to understand at first but we have learned to understand a great deal about how water flows as we have grown up by watching it. Basic electrical theory is often taught by comparing it to water. By and large, when we examine our knowledge of the world, we find it is rife with metaphors. We can trace many ways we think about things and events to ‘grounding’ in experiences of infants. The way babies establish movement and sensory information is the foundation of enormous trees and pyramids of metaphorical understanding.

But what is a metaphor? We can think of it as a number of entities that are related in some way (in space, in time, in cause-effect, or in logic etc.) to form a structure that we can understand and think of/ remember/ name/ use as a predictive model and treat as a single thing. This structure can be reused without being reinvented. The entities can be re-labeled and so can the relations between them. So if we know water flowing through a pipe will be limited by a narrower length of pipe we can envisage an electrical current in a wire being limited by a resistor. Nothing needs to be retained in a metaphor but the abstract structure. This facility of being able to manipulate metaphors is important to thinking, learning, communicating. Is there more? Perhaps.

A recent paper (Rolf Inge Godøy, Minho Song, Kristian Nymoen, Mari Romarheim Haugen, Alexander Refsum Jensenius; Exploring Sound-Motion Similarity in Musical Experience; Journal of New Music Research, 2016; 1) talks about the use of a type of metaphor across the senses and movement. Here is the abstract:

People tend to perceive many and also salient similarities between musical sound and body motion in musical experience, as can be seen in countless situations of music performance or listening to music, and as has been documented by a number of studies in the past couple of decades. The so-called motor theory of perception has claimed that these similarity relationships are deeply rooted in human cognitive faculties, and that people perceive and make sense of what they hear by mentally simulating the body motion thought to be involved in the making of sound. In this paper, we survey some basic theories of sound-motion similarity in music, and in particular the motor theory perspective. We also present findings regarding sound-motion similarity in musical performance, in dance, in so-called sound-tracing (the spontaneous body motions people produce in tandem with musical sound), and in sonification, all in view of providing a broad basis for understanding sound-motion similarity in music.”

The part of this paper that I found most interesting was a discussion of abstract ‘shapes’ being shared by various senses and motor actions.

A focus on shapes or objects or gestalts in perception and cognition has particularly concerned so-called morphodynamical theory … morphodynamical theory claims that human perception is a matter of consolidating ephemeral sensory streams (of sound, vision, touch, and so on) into somehow more solid entities in the mind, so that one may recall and virtually re-enact such ephemeral sensations as various kinds of shape images. A focus on shape also facilitates motion similarity judgments and typically encompasses, first of all, motion trajectories (as so-called motion capture data) at various timescales (fast to slow, including quasi-stationary postures) and amplitudes (from large to small, including relative stillness). But shapes can also capture perceptually and affectively highly significant derivatives, such as acceleration and jerk of body motion, in addition.

The authors think of sound objects as occurring in the time range of half a second to five seconds. Sonic objects have pitch and timbre envelopes, rhythmic, melodic and harmonic patterns. In terms of dynamics, sonic objects can: be impulsive with an envelop showing an abrupt onset and then decay, or be sustained with a gradual onset and longer duration, or be iterative with rapidly repeated sound, tremolo, or drum roll. Sonic objects could have pitch that is stable, variable or just noise. These sonic objects are related to similar motion objects – objects in the same time range that produce music or react to it. For example the sonic objects in playing a piano piece or in dancing. They also have envelopes of velocity and so on. This reminds me of the similar emotions that are triggered by similar envelopes of musical sound and speech. Or, the objects that fit with the nonsense words ‘bouba’ and ‘kiki’ being smooth or sharp. ‘Shape’ is a very good description of the vague but strong and real correspondences between objects from different domains. It is probably the root of being able to use adjectives across domains. For example, we can have soft light, soft velvet, soft rustle, soft steps, soft job, and more or less soft anything. Soft describes different things in different domains but, despite the differences, it is a metaphoric connection between domains so that concrete objects can be made by combining a number of individual sensory/motor objects which share abstract characteristics like soft.

In several studies of cross-modal features in music, a common element seems to be the association of shape similarity with sound and motion, and we believe shape cognition can be considered a basic amodal element of human cognition, as has been suggested by the aforementioned morphodynamical theory …. But for the implementation of shape cognition, we believe that body motion is necessary, and hence we locate the basis for amodal shape cognition in so-called motor theory. Motor theory is that which can encompass most (or most relevant) modalities by rendering whatever is perceived (features of sound, textures, motion, postures, scenes and so on) as actively traced shape images.

The word ‘shape’, used to describe corresponding characteristics from different domains, is very like the word ‘structure’ in metaphors and may point to the foundation of our cognition mechanisms, including much more than just the commonplace metaphor.