Tag Archives: cooperation

What is the motive?

It is clear from bacteria to ourselves that cooperation has evolved many times in all sorts of organisms and so it clearly has an advantage that can be realized. However, it is also obvious that simple unquestioned cooperation works if everyone cooperates but would be a great disadvantage once cheaters became numerous. This looks like a paradox – it evolves but why. Cooperation is especially important to humans. You cannot develop our sort of civilization – do neurosurgery or send rockets to the moon or use language – as lone uncooperative individuals.

Two types of cooperation do seem to fit in an evolutionary picture – cooperation between related animals (kin), and reciprocity/trading favours. It is easy to see how these would arise in evolution and be stable. Also (if you accept group selection) groups that were predominately cooperators could out perform groups that were mostly cheaters. Group selection may only work well if the groups are on the small side and then it would be hard to separate this from helping kin and reciprocal relationships. But how does cooperation survive in the large society starting with both cooperators and cheaters?

The Prisoner’s Dilemma game has been used for many years with various modifications (both played by people and by programs) to find the conditions that are needed for cooperation to lose its disadvantages. One of the first fairly successful modifications was ‘tit-for-tat’ in various forms. If someone does not cooperate with you on some occasion then you do not cooperate with them in future. In a population that starts with lots of cooperators and few cheaters, the cheaters will be frozen out of any cooperation and the cooperators will flourish. The models were improved with more ingredients. By itself it is not quite good enough. Another ingredient is punishment of cheaters over and above tit-for-tat. For example cheaters can lose their reputation or in some other way carry a sign that says, “I’m a cheater.” Or a cheater could be directly punished by the individual that was hurt, or by the whole society, or by 3rd party punishers. They can be banished from the group or from participating in particular activities. We humans seem to have a built in joy in cooperating, but also a pleasure in gossip about people who are not worthy, and a need for justice and/or revenge for those that take advantage of our trust.

A recent paper (citation below) by Hoffman and others, examines the idea of examining a person’s motives in deciding whether they are trust worthy. “Why do we trust people more when they do good without considering in detail the cost to themselves? People who avoid “looking” at the costs of good acts can be trusted to cooperate in important situations, whereas those who look cannot. We find that evolutionary dynamics can lead to cooperation without looking at costs. Our results illuminate why we attend closely to people’s motivations for doing good, as prescribed by deontological ethicists such as Kant, and, also, why we admire principled people, adhere to taboos, and fall in love.

Here is the abstract: “Evolutionary game theory typically focuses on actions but ignores motives. Here, we introduce a model that takes into account the motive behind the action. A crucial question is why do we trust people more who cooperate without calculating the costs? We propose a game theory model to explain this phenomenon. One player has the option to “look” at the costs of cooperation, and the other player chooses whether to continue the interaction. If it is occasionally very costly for player 1 to cooperate, but defection is harmful for player 2, then cooperation without looking is a subgame perfect equilibrium. This behavior also emerges in population-based processes of learning or evolution. Our theory illuminates a number of key phenomena of human interactions: authentic altruism, why people cooperate intuitively, one-shot cooperation, why friends do not keep track of favors, why we admire principled people, Kant’s second formulation of the Categorical Imperative, taboos, and love.”

Hoffman, M., Yoeli, E., & Nowak, M. (2015). Cooperate without looking: Why we care what people think and not just what they do Proceedings of the National Academy of Sciences, 112 (6), 1727-1732 DOI: 10.1073/pnas.1417904112

I'm on ScienceSeeker-Microscope

Wolf to dog

Why were dogs domesticated so early? How was it done? A recent paper (citation below) looks at how much of dog behaviour might have been already in the wolf with no effort needed to produce it in the dog. All that may have been needed was to have the wolf lose its fear of man and accept man as a partner.

The researchers, Range and Viranyi, looked at the levels of tolerance and attentiveness in wolves and dogs that were living in the same sort of group and enclosure with the same interaction with humans during their whole lives. In other words they compared like with like rather than pets with wild animals. They were looking at cooperation which has its foundation in two traits. Social tolerance, the ease with which animals live and ‘work’ together, is “usually measured in the context of feeding, which is not accompanied with aggression or, if aggression occurs, it is bidirectional and ritualized.” Tolerance points to particular social emotions and communication. Social attentiveness, the amount of monitoring of companions, is important in cooperation, to know a partner’s behavior and intentions by close observation. Following another’s gaze is an indication of attentiveness. They put forward a hypothesis: “Based on findings that in intraspecific contexts wolves are at least as socially attentive and tolerant as dogs, the Canine Cooperation Hypothesis postulates that dog-human cooperation evolved on the basis of wolf-wolf cooperation. In contrast to many domestication hypotheses, it suggests that dogs did not need to be selected for a general increase in their social attentiveness and tolerance. ”

There was one experiment in particular that I found very interesting. “… we investigated gaze following into distant space and around barriers in wolves. This ability to coordinate with others’ head orientation to look in the same direction is considered a key step toward an understanding of others mental states like attention and intention and thus, is potentially also very important for being able to successfully cooperate. However, while gaze following into distant space could be simply a socially facilitated orientation response (i.e., a predisposition to look where others are looking) , gaze following around barriers, where individuals need to reposition themselves to look behind the obstacle and assess the visual persepctive of the cue-giver different from their own, has been suggested to require a mental representation of the looker’s visual perspective or learning how visual barriers impair perceptions. Accordingly, this latter ability to track another’s gaze around obstacles seems to be cognitively more advanced, and has been suggested to occur especially in species with high levels of cooperative and competitive interactions. Our results showed that wolves followed human gaze as readily as conspecific gaze implying their high social attention and their readiness to accept humans as social partners who might provide important information. ” I have thought that some dogs such as seeing-eye dogs had the ability to envisage the size, shape and mobility of their charges as if they could imagine ‘walking in their shoes”. This sort of ‘dog owners’ belief has been criticized heavily but has not changed the opinion of many owners. It is nice to see some experimental evidence of that type of ability in canines.

Here is the abstract : “At present, beyond the fact that dogs can be easier socialized with humans than wolves, we know little about the motivational and cognitive effects of domestication. Despite this, it has been suggested that during domestication dogs have become socially more tolerant and attentive than wolves. These two characteristics are crucial for cooperation, and it has been argued that these changes allowed dogs to successfully live and work with humans. However, these domestication hypotheses have been put forward mainly based on dog-wolf differences reported in regard to their interactions with humans. Thus, it is possible that these differences reflect only an improved capability of dogs to accept humans as social partners instead of an increase of their general tolerance, attentiveness and cooperativeness. At the Wolf Science Center, in order to detangle these two explanations, we raise and keep dogs and wolves similarly socializing them with conspecifics and humans and then test them in interactions not just with humans but also conspecifics. When investigating attentiveness toward human and conspecific partners using different paradigms, we found that the wolves were at least as attentive as the dogs to their social partners and their actions. Based on these findings and the social ecology of wolves, we propose the Canine Cooperation Hypothesis suggesting that wolves are characterized with high social attentiveness and tolerance and are highly cooperative. This is in contrast with the implications of most domestication hypotheses about wolves. We argue, however, that these characteristics of wolves likely provided a good basis for the evolution of dog-human cooperation.

Range, F., & Virányi, Z. (2015). Tracking the evolutionary origins of dog-human cooperation: the “Canine Cooperation Hypothesis” Frontiers in Psychology, 5 DOI: 10.3389/fpsyg.2014.01582

I'm on ScienceSeeker-Microscope

What can be learned from social animals

orpheusMany would have us believe that it is a disadvantage is be social, generous, trusting, cooperative, unselfish or whatever it is called. But it is not a disadvantage, it is an advantage. Cooperation comes with costs like having to control cheaters but it is a very old and successful strategy. In this third post in the animal series, I look at social animals.



Comparative Neuro-biology 3: What can be learned from social animals?



Before we look at social animals, let’s look at very ancient cooperation. The difference between eucaryote cells and prokaryote ones is enormous. Prokaryotes such as bacteria are essentially just a lipid bag of water, salts, proteins, nucleic acid and carbohydrates. They have very limited internal structure and therefore very limited control over their metabolism. Eukaryote cells are also essentially a lipid bag but inside the bag there are many other bags. The DNA is inside a bag (the nucleus) and so access to it is controlled. The engines that burn sugar for energy are each in their own bags (the mitochondria) and the membranes are essential to the process of reaping energy. And so it goes for photosynthesis, protein manufacture, export from the cell and so on. How did eukaryote cells evolve? It seems to be that simple cells cooperated and eventually became so dependent on each other that they merged into a single more complex entity – one with extremely sophisticated control mechanism.


Eukaryotic cells differ from prokaryotic cells by their more complex intracellular organisation. Distinct cellular processes are compartmentalised. This improves efficiency but a problem emerges. Different compartments need to exchange specific molecules and certain molecules need to be exported to the cell exterior. Since most molecules are too large to directly pass through membranes, a mechanism is required to deliver the cargo. The 2013 Nobel Prize in Physiology or Medicine is awarded to Dr. James E. Rothman, Dr. Randy W. Schekman and Dr. Thomas C. Südhof for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells. This represents a paradigm shift in our understanding of how the eukaryotic cell, with its complex internal compartmentalisation, organises the routing of molecules packaged in vesicles to various intracellular destinations, as well as to the outside of the cell.” (Nobel press release)



So… cooperation in biology is very ancient and is the foundation of multicellular organisms: plants, animals and fungi. But the idea of multicellular organisms itself requires cooperation. The individual cells have to give up any selfish sovereignty to the organism. The cells, tissues and organs have to cooperate or the organism dies. By staying and working together they can live outside the ocean on dry land, eat many more varied foods and all the other things that plants and animals can do that bacteria cannot. Every once in a while some cell goes maverick and attempts to escape the multicellular restriction and we have a cancer. Most cells do not make it to the stage of a cancer because the organism has methods of finding and killing cells that cheat. Cellular slime molds are right on the edge of the divide between multicellular and single celled organisms. How do they deal with cheaters?


Much of what we know about the evolution of altruism comes from animals. Here, we show that studying a microbe has yielded unique insights, particularly in understanding how social cheaters are controlled. The social stage of Dictylostelium discoideum occurs when the amoebae run out of their bacterial prey and aggregate into a multicellular, motile slug. This slug forms a fruiting body in which about a fifth of cells die to form a stalk that supports the remaining cells as they form hardy dispersal-ready spores. Because this social stage forms from aggregation, it is analogous to a social group, or a chimeric multicellular organism, and is vulnerable to internal conflict. Advances in cell labeling, microscopy, single-gene knockouts, and genomics, as well as the results of decades of study of D. discoideum as a model for development, allow us to explore the genetic basis of social contests and control of cheaters in unprecedented detail. Cheaters are limited from exploiting other clones by high relatedness, kin discrimination, pleiotropy (multiple effects of a gene), noble resistance, and lottery-like role assignment. The active nature of these limits is reflected in the elevated rates of change in social genes compared with nonsocial genes. Despite control of cheaters, some conflict is still expressed in chimeras, with slower movement of slugs, slightly decreased investment in stalk compared with spore cells, and differential contributions to stalk and spores. D. discoideum is rapidly becoming a model system of choice for molecular studies of social evolution.” (Strassmann 2011)



Then there is symbiosis. Organisms that are separate but live in intimate contact – corals and lichens for example. Lichens are an association of an algae and a fungus – they are successful on rocks that support nothing else. Corals are an association of the invertebrate coral polyp and an algae – its reef colonies are the foundation of a very successful ecosystem (at least until recent ocean changes). There are a lot of different types and degrees of symbiosis. It is a successful way of life.



Social insects (ants, termites, bees, wasps) are amazingly successful. Their cooperation is very evident and the obvious reason for their success. The social vertebrates are also successful. Throughout biology, where ever we look we find cooperation. From the tiny cells and their physiology, to organisms, to cooperating organisms, even to ecosystems, we find cooperation succeeds. So when someone says that cooperation is a strategy that fails – they are wrong. The proof that cooperation works is all around us. What are the game theorists missing?


With new insights into the classical game theory match-up known as the “Prisoner’s Dilemma,” University of Pennsylvania biologists offer a mathematically based explanation for why cooperation and generosity have evolved in nature. …The Prisoner’s Dilemma is a way of studying how individuals choose whether or not to cooperate. In the game, if both players cooperate, they both receive a payoff. If one cooperates and the other does not, the cooperating player receives the smallest possible payoff, and the defecting player the largest. If both players do not cooperate, they receive a payoff, but it is less than what they would gain if both had cooperated. In other words, it pays to cooperate, but it can pay even more to be selfish…After simulating how some generous strategies would fare in an evolving population, Steward and Plotkin crafted a mathematical proof showing that, not only can generous strategies succeed in the evolutionary version of the Prisoner’s Dilemma, in fact these are the only approaches that resist defectors over the long term. “Our paper shows that no selfish strategies will succeed in evolution,” Plotkin said. “The only strategies that are evolutionarily robust are generous ones.”…. “When people act generously they feel it is almost instinctual, and indeed a large literature in evolutionary psychology shows that people derive happiness from being generous,” Plotkin said. “It’s not just in humans. Of course social insects behave this way, but even bacteria and viruses share gene products and behave in ways that can’t be described as anything but generous.” “We find that in evolution, a population that encourages cooperation does well,” Stewart said. “To maintain cooperation over the long term, it is best to be generous.”(Steward 2013)



(Aside: I have to say that the Prisoner’s Dilemma is not life. When there is a supposed simulation of the real world, the question to ask is exactly when and where this is a valid simulation rather than a useless mathematical/logical formula. That cooperation works and is wide-spread is an established fact, why this might be is the question that the game/simulation research is about.)



The problem with the Prisoner’s Dilemma as a model is that there is no communication and communication is key to cooperation. All the examples of cooperation have some level of communication. It can be physical contact, chemical exchanges, smells, visual signs, sounds; but there must be communication, an awareness of what the partner/s are doing. Communication is necessary for a level of ‘trust’, including the identification of a partner as legitimate at its simplest. No communication; no trust; no cooperation. Communication is not some little add-on but something important that living things do, internally and externally.



There are very impressive examples of cooperation in mammals, especially the hunting strategies of various dogs, cats and dolphins. We find that social mammals have ways of communicating that are similar to our non-verbal communication – no real difference of kind. Probably the oldest non-verbal channel is posture. When I used to give talks on non-verbal communication, I would point out that the different between taking an upright, head up stance and taking a low, head down stance is extremely old and very obvious in reptiles as well as birds and mammals. The tall pose is aggressive and the crouching pose is submissive. Postural communication is very clear in dogs, horses, primates – and that includes humans. The dog’s play-bow is a good example. It says, “What I do now is not meant to be taken seriously, it is just play. Come play with me.” Posture even can work between species. Apparently it works for huskies and polar bears, as has been shown on YouTube. “Here comes a wild polar bear cut off from his normal seal diet by the water-not-yet-ice … he comes upon a husky tethered in the snow … it looks like lunch time for the bear. … It is not hostility being exchanged between these two… note the the polar bear’s eyes are soft, the husky’s ears are back, his hair is flat and his mouth is open without showing fangs – just a few moments before, as the bear came into view, the husky was in a crouched (play) bow and a wagging tail… something beside attack is on their minds… two carnivores facing each other and, instead of a bear’s predatory attack to feed his hunger, something magical happens” … (see pictures at nifplay below)



I could give a long list of animal communications including everything from bacteria to apes but I will not. I think anyone would agree that communication is common among animals. The point I am making is that without communication we cannot have cooperation and without cooperation we cannot have social groups. Without social groups, we do not have culture. Culture is the big prize. Culture is what humans have in abundance and other social animals have only small amounts of. Culture is what allows us to visit the moon. We have an explosion of culture and that is because we have a great advance in communication, our languages.



Why do other animals such as the apes have communication and cooperation and even a little culture, but they do not have language and with it no explosion of culture? We could just throw up our hands and say, “that’s evolution”. But actually it is a very serious question. When we have chimps and bonobos in captivity and familiar with humans, it is possible to teach them rudimentary language using hand signs or computer tools. So it seems it should have been possible for them to have developed protolanguage and then like humans to have found it so useful that both biological and cultural evolution would have favoured it. But this did not happen. There are a number of other animals that ‘might’ have developed language but didn’t, although they have extension communication and cooperation – elephants and dolphins come to mind.



Blair Bolles in his blog Babel’s Dawn examined the origin of language for about 7 years. He came very close to the heart of the problem in the ideas: that language is dangerous as well as advantageous; and, that group evolution is possible. It is not always in an individual’s best interests to share secrets, let alone broadcast them. Animal communication seems to be limited to very stereotyped messages. Given non-group evolution it may be impossible for language to be selected for because it is often not to the individuals advantage. It is very difficult to show group selection in biological traits but cultural evolution is very obviously a result of group selection (it being groups and not individuals that have culture). We are talking about a little jump from the realm of predominately biological evolution to predominately social evolution. The bonobo is on the one side of that gap and we are on the other.


We know that captive chimpanzees can learn to use words and phrases but in the wild they never tell one another anything. They communicate to control. This kind of discretion is easy to explain in terms of individual selection. A chimpanzee who knows where there will be some ripe fruit has an advantage over its fellows. A chimpanzee who blabs his news has given up an advantage. The fitness score of the chimpanzee who keeps secrets is almost certainly higher than the blabbermouth’s score. Thus, even though groups might benefit from language, it is not going to evolve among chimpanzees. This kind of reasoning makes it easy to explain why language never evolved with other species, and hard to explain why humans have such a hard time keeping secrets. (see Bolles’ post below)



We have come full circle: communication facilitates cooperation, which facilitates culture, which facilitates communication and cooperation.



Image: Orpheus charming the animals by Jacob Savery




Eukaryote controls – Press releases about Nobel Awards


Strassmann JE, Queller DC; Evolution of cooperation and control of cheating in a social microbe; Proc Natl Acad Sci U.S.A 2011, 108 Suppl 2:10855.62. doi: 10.1073/pnas.1102451108




University of Pennsylvania material (2013), Biologists show that generosity leads to evolutionary success http://www.sciencedaily.com/releases/2013/09/130902162716.htm


Play signals – http://nifplay.org/polar-husky.html


Origins of language – http://www.babelsdawn.com/babels_dawn/2012/07/language-serves-the-group.html