Category Archives: space

Islands and ocean of memory

Episodic memories are tagged with information about time and place. If we remember an event then it is almost certain we will remember where it happened and where it lies in the temporal sequence of events. Research has shown that an activity pattern in a part of the brain involved in memory, the entorhinal cortex, feeds where and when information to the hippocampus which forms the new memory.

The research is reported in a recent paper: Takashi Kitamura, Chen Sun, Jared Martin, Lacey J. Kitch, Mark J. Schnitzer, Susumu Tonegawa. Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory. Neuron, 2015; DOI: 10.1016/j.neuron.2015.08.036.

The entorhinal area involved has been likened to an ocean of context specific ‘where’ cells with islands of ‘when’ cells. The ocean cells signal the CA3 cells of the hippocampus and the island cells signal the CA1 cells. If ocean cells are blocked, animals cannot learn to connect fear with a particular environment. Island cells seem to react to the speed an animal is moving at and manipulating their signals changed the gap between events being linked in an animals memory. This is probably one of many ingredients in the processing of time-and-space.

Absract: “Forming distinct representations and memories of multiple contexts and episodes is thought to be a crucial function of the hippocampal-entorhinal cortical network. The hippocampal dentate gyrus (DG) and CA3 are known to contribute to these functions, but the role of the entorhinal cortex (EC) is poorly understood. Here, we show that Ocean cells, excitatory stellate neurons in the medial EC layer II projecting into DG and CA3, rapidly form a distinct representation of a novel context and drive context-specific activation of downstream CA3 cells as well as context-specific fear memory. In contrast, Island cells, excitatory pyramidal neurons in the medial EC layer II projecting into CA1, are indifferent to context-specific encoding or memory. On the other hand, Ocean cells are dispensable for temporal association learning, for which Island cells are crucial. Together, the two excitatory medial EC layer II inputs to the hippocampus have complementary roles in episodic memory.

The center of the universe

When we are conscious we look out at the world through a large hole in our heads between our noses and our foreheads, or so it seems. It is possible to pin-point the exact place inside our heads which is the ‘here’ to which everything is referenced. That spot is about 4-5 centimeters behind the bridge of the nose. Not only sight but hearing, touch and the feelings from inside our bodies are some distance in some direction from that spot. As far as we are concerned, we carry the center of the universe around in our heads.

Both our sensory system and our motor system use this particular three dimensional arrangement centered on that particular spot and so locations are the same for both processes. How, why and where in the brain is this first person, ego-centric space produced? Bjorn Merker has a paper in a special topic issue of Frontiers of Psychology, Consciousness and Action Control (here). The paper is entitled “The efference cascade, consciousness and its self: naturalizing the first person pivot of action control”. He believes evidence points to the roof of the mid-brain, the superior colliculus.

If we consider the center of our space, then attention is like a light or arrow pointing from the center to a particular location in that space and what is in it. That means that we are oriented in that direction. “The canonical form of this re-orienting is the swift and seamlessly integrated joint action of eyes, ears (in many animals), head, and postural adjustments that make up what its pioneering students called the orienting reflex.

This orientation has to occur before any action directed at the target or any examination of the point of interest by our senses. First the orientation and then the focus of attention. But how does the brain decide which possible focus of attention is the one to orient towards. “The superior colliculus provides a comprehensive mutual interface for brain systems carrying information relevant to defining the location of high priority targets for immediate re-orienting of receptor surfaces, there to settle their several bids for such a priority location by mutual competition and synergy, resulting in a single momentarily prevailing priority location subject to immediate implementation by deflecting behavioral or attentional orientation to that location. The key collicular function, according to this conception, is the selection, on a background of current state and motive variables, of a single target location for orienting in the face of concurrent alternative bids. Selection of the spatial target for the next orienting movement is not a matter of sensory locations alone, but requires access to situational, motivational, state, and context information determining behavioral priorities. It combines, in other words, bottom-up “salience” with top-down “relevance.”

We are provided with the illusion that we sit behind our eyes and experience the world from there and from there we plan and direct our actions. A lot of work and geometry that we are unaware of goes into this illusion. It allows us to integrate what we sense with what we do, quickly and accurately.

 

A train of discrete places

Place cells are active when an animal is moving about, when it is learning a route, when it is revisiting the path during sleep, when it is planning a route and when it is taking that route. The place cells are active in a sequence that defines the route.

ScienceDaily has an item (here) on a recent paper (B. E. Pfeiffer, D. J. Foster. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 2015; 349 (6244): 180). The paper describes the events in remembering a route.

Foster says, “My own introspective experience of memory tends to be one of discrete snapshots strung together, as opposed to a continuous video recording. Our data from rats suggest that our memories are actually organized that way, with one network of neurons responsible for the snapshots and another responsible for the string that connects them.

The research showed gaps between the ‘snapshot’ discrete memories of a place. “The trajectories that the rats reconstructed weren’t smooth. We were able to see that neural activity ‘hovers’ in one place for about 20 milliseconds before ‘jumping’ to another place, where it hovers again before moving on to the next point. At first, you get a ‘blurry’ representation of point A because a bunch of place cells all around point A fire, but, as time passes, the activity becomes more focused on A. Then the activity jumps to a “blurry” version of B, which then gets focused. We think that there is a whole network of cells dedicated to this process of fine-tuning and jumping. Without it, memory retrieval would be even messier than it is.

It seems to me that this discrete series of place memories may well be like consciousness – a discrete train of individual conscious moments rather than a continuous ‘movie’.

Here is the abstract:

Neuronal circuits produce self-sustaining sequences of activity patterns, but the precise mechanisms remain unknown. Here we provide evidence for autoassociative dynamics in sequence generation. During sharp-wave ripple (SWR) events, hippocampal neurons express sequenced reactivations, which we show are composed of discrete attractors. Each attractor corresponds to a single location, the representation of which sharpens over the course of several milliseconds, as the reactivation focuses at that location. Subsequently, the reactivation transitions rapidly to a spatially discontiguous location. This alternation between sharpening and transition occurs repeatedly within individual SWRs and is locked to the slow-gamma (25 to 50 hertz) rhythm. These findings support theoretical notions of neural network function and reveal a fundamental discretization in the retrieval of memory in the hippocampus, together with a function for gamma oscillations in the control of attractor dynamics.

The smell of the land

The sense of smell is intriguing. It is not as readily conscious as sight, hearing, touch and taste; so it is often discounted. However, humans do have the ability is smell quite well and can learn to do so in sophisticated and conscious ways. Perfumers are an example of this. We also know that a particular smell can bring back the memory of a place in a flash that seems quite miraculous. It is the most important sense for many mammals – used to identify objects and places, track and navigate, and communicate emotional signals. There is no reason to think that we are that much different; we probably use smell as a background (largely unconscious) canvas on which to perceive the world.

Recent research (citation below) has indicated such a canvas. Jacobs and others experimented with human subjects to see if they could map their surroundings using odour gradients. They used a large room with two distinct sources of different odours. The subjects were disoriented, placed in a spot and asked to remember its smell. They were disoriented again and asked to find the spot using their memory of the odour. This was done first with sight and hearing blocked and only the sense of smell available, then repeated with sight as the only sense available, and finally with all three senses blocked. The subjects could come close to the target spot with scent alone, compared to the control of none of the three senses being available.

This is a distinct ability and not the same a tracking a smell or identifying an object or place. This is the formation of a map based on odour gradients. Spatial maps are created in the hippocampus and the olfactory bulb is strongly connected to the hippocampus. The authors address the relationship between the odour map, the sound map (echo location), and the visual map etc. “The ability to navigate accurately is critical to survival for most species. Perhaps for this reason, it is a general property of navigation that locations are encoded redundantly, using multiple orientation mechanisms, often from multiple sensory systems. Encoding the location with independent systems is also necessary to correct and calibrate the accuracy of any one system. As a general principle, then, navigational accuracy and robustness should increase with the number of unique properties exhibited by redundant orientation systems.

Abstract: “Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans.”

Citation: Jacobs LF, Arter J, Cook A, Sulloway FJ (2015) Olfactory Orientation and Navigation in Humans. PLoS ONE 10(6): e0129387. Doi:10.1371/ journal.pone.0129387