It is not about rules

The question of the trolley has always bothered me. You probably have encountered the scenario many times. You are on a bridge over a trolley track with another person you do not know. There are 5 people on the track some way off. A run-away trolley is coming down the track and will hit the 5 people. Do you allow this to happen or do you throw the person beside you onto the track in front of the trolley to stop it? This question comes in many versions and is used to categorize types of moral reasoning. My problem is that I do not know what I would do in the few seconds I would have to consider the situation and I don’t believe that others know either.

In another dip into OpenMIND (here) I find a paper on morality by Paul Churchland, “Rules: The Basis of Morality?”. This is the abstract:

Most theories of moral knowledge, throughout history, have focused on behavior-guiding rules. Those theories attempt to identify which rules are the morally valid ones, and to identify the source or ground of that privileged set. The variations on this theme are many and familiar. But there is a problem here. In fact, there are several. First, many of the higher animals display a complex social order, one crucial to their biological success, and the members of such species typically display a sophisticated knowledge of what is and what is not acceptable social behavior —but those creatures have no language at all. They are unable even to express a single rule, let alone evaluate it for moral validity. Second, when we examine most other kinds of behavioral skills—playing basketball, playing the piano, playing chess—we discover that it is surpassingly difficult to articulate a set of discursive rules, which, if followed, would produce a skilled athlete, pianist, or chess master. And third, it would be physically impossible for a biological creature to identify which of its myriad rules are relevant to a given situation, and then apply them, in real time, in any case. All told, we would seem to need a new account of how our moral knowledge is stored, accessed, and applied. The present paper explores the potential, in these three regards, of recent alternative models from the computational neurosciences. The possibilities, it emerges, are considerable.

Apes, wolves/dogs, lions and many other intelligent social animals appear to have a moral sense without any language. They have ways of behaving that show cooperation, empathy, trust, fairness, sacrifice for the group and punishment of bad behavior. They train their young in these ways. No language codifies this behavior. Humans that lose their language through brain damage and can not speak or comprehend language still have other skills intact, including their moral sense. People who are very literate and very moral can often not give an account of their moral rules – some can only put forward the Golden Rule. If we were actually using rules they would be able to report them.

We should consider morality a skill that we learn rather than a set of rules. It is a skill that we learn and continue learning thoughout our lives. A skill that can take into consideration a sea of detail and nuance, that is lightning fast compared to finding the right rule and applying it. “Moral expertise is among the most precious of our human virtues, but it is not the only one. There are many other domains of expertise. Consider the consummate skills displayed by a concert pianist, or an all-star basketball player, or a grandmaster chess champion. In these cases, too, the specific expertise at issue is acquired only slowly, with much practice sustained over a period of years. And here also, the expertise displayed far exceeds what might possibly be captured in a set of discursive rules consciously followed, on a second-by-second basis, by the skilled individuals at issue. Such skills are deeply inarticulate in the straightforward sense that the expert who possesses them is unable to simply tell an aspiring novice what to do so as to be an expert pianist, an effective point guard, or a skilled chess player. The knowledge necessary clearly cannot be conveyed in that fashion. The skills cited are all cases of knowing how rather than cases of knowing that. Acquiring them takes a lot of time and a lot of practice.

Churchland then describes how the neural bases of this sort of skill is possible (along with perception and action). He uses a model of Parallel Distributed Processing where a great deal of input can quickly be transformed into a perception or an action. It is an arrangement that learns skills. “It has to do with the peculiar way the brain is wired up at the level of its many billions of neurons. It also has to do with the very different style of representation and computation that this peculiar pattern of connectivity makes possible. It performs its distinct elementary computations, many trillions of them, each one at a distinct micro-place in the brain, but all of them at the same time. … a PDP network is capable of pulling out subtle and sophisticated information from a gigantic sensory representation all in one fell swoop.” I found Churchland’s explanation very clear and to the point but I also thought he was using AI ideas of PDP rather than biological ones in order to be easily understood. If you are not familiar with parallel processing ideas, this paper is a good place to find a readable starting explanation.

Another slight quibble with the paper is that he does not point out that some of the elements of morality appear to be inborn and those elements probably steer the moral learning process. Babies often seem to ‘get it’ prior to the experience need develop and improve the skill.


Leave a Reply

Your email address will not be published. Required fields are marked *