Tag Archives: mirror neurons

Forget the hype


I have just done three very difficult posts and I want to do an easy one. How about a rant on mirror neuron theories?

Suppose I find a magic neuron that ‘lights up’ when the subject says ‘tree’. It also reacts if someone else says ‘tree’, or someone points to a tree. But it is silence for a little bush or the ‘word’ bush. This magic neuron allows me to understand a tree and know what is happening in someones mind when they say tree or point at one. It is probably the foundation of empathy, civilization, language and all good things. You will probably say nonsense, the cell just ‘lights up’ for the concept of tree – first you have to identify this thing and that it is called ‘tree’ before you can have a cell react to the concept. Understanding of concept causes a cell reacting to concept – not, cell reacting to concept causes understanding of concept. It is not a magic cell and so neither are mirror neurons. A cell reacting to the concept of ‘reaching’ is no more unusual or special than a cell reacting to the concept of ‘tree’.

I have ranted about this before. Others have ranted too, but somehow the magic just seems to stay associated to mirror neurons.

About a year ago Costandi in the Guardian said the whole subject was based on slim evidence. The neurons may not be where expected or act as described. (here) He was not the first to doubt the hype.

The doubts have come to the fore again with reactions to a paper by Heyes. (here)

Abstract: Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen’s original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible ‘best explanation’ for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of ‘survival value’, should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

Nautilus posted a review of the Heyes paper (here) in which he points out that mirror neurons are produced by associative learning – even Heyes agrees.

Move along folks – no magic here!